300 Plus® (steel)

NATURAL

NATURAL

CHARACT	ERISTICS	E	QUIVA	ALENT	S	CI	HEMI	CAL A	NAL	/SIS (9	%)
Tensile Strength (MPa)	440 - 480	ASTM	EURO	BS	JIS	Mn	С	Si	Р	S	
Tensile Strength (MPd)	440 - 400	A633A	EN10025	4360-43A		1.60	0.25	0.5	0.04	0.04	
Yield Strength (MPa)	280-320										
field Strength (MPd)	200-320	NOTES Hot Rolled Steel Sections are produced in Australia by Infrabuild to AS3679									
		Hot	Rolled S ⁻			· ·		-		ild to AS3	3679
		and AS 3678. Further info https://www.edconsteel.com.au/wp-content/uploa								eel-hotroll	ed.pdf
DESCR 300PLUS® Steel is t manufactured for Hot Sections, Welded Beam Rounds, Squa	he standard grade Rolled Structural Steel Sections, Merchant Bar	E	xtensive	use in all f		PPLIC Construct			and Man	ufacturing	g.

WARNING: While all care has been taken to provide accurate information here, it should be noted that it is for a guide only and any information must be checked by the manufacturer before being relied upon.

Sydney Metro

Blacktown Brookvale Revesby 15 Garling Road Kings Park 10/9-13 Winbourne Road Brookvale 122 Milperra Road Revesby

Rural

Bathurst Orange 51 Sydney Road Raglan 23 Leewood Drive Orange

C250LO (Hollow Sections)

Colour coded for thickness

Colour coded for thickness

CHARAC ⁻	TERISTIC	S		C	HEMI	CAL A	NAL	/ <mark>SIS (</mark> %	%)		
Tensile Strength (MPa)		320	с	Si	Mn	Р	S	AI	CE*		
		520	0.04	0.005	0.19	0.006	0.005	0.015	0.07		
Yield Strength (Mpa)		250	0.07	0.02	0.3	0.018	0.018	0.06	0.12		
neid Strength (Mpa)	-	230				NO.	TES				
										ual comp equire pr	
DESCR This is the most common y Heavy wall pipe will be su Light pipe typically	upplied as. Ext	tra Light and				PPLIC ils, Bollar					

WARNING: While all care has been taken to provide accurate information here, it should be noted that it is for a guide only and any information must be checked by the manufacturer before being relied upon.

Sydney Metro

Blacktown Brookvale Revesby 15 Garling Road Kings Park 10/9-13 Winbourne Road Brookvale 122 Milperra Road Revesby

Rural

Bathurst Orange 51 Sydney Road Raglan 23 Leewood Drive Orange

C350LO (Hollow Sections)

Colour coded for thickness

Colour coded for thickness

CHARAC				C	HEMI		NALY	/SIS (%	%)		
Tensile Strength (MPa)	Minimu	m (30	с	Si	Mn	Р	S	AI	CE*		
	MINIMU	111 430	0.13	0.005	0.65	0.01	0.005	0.02	0.24		
Yield Strength (Mpa)	Minimu	m 750	0.17	0.02	0.8	0.025	0.015	0.055	0.3		
		111 330				NO.	TES				
										ual comp equire pre	
DESCR C350LO is the grade that m Hollow Sections will con sections are available in D	form to. Some D	Duragal®		Fr		PPLIC encing, F		NS d Columi	าร		

WARNING: While all care has been taken to provide accurate information here, it should be noted that it is for a guide only and any information must be checked by the manufacturer before being relied upon.

Sydney Metro

Blacktown Brookvale Revesby 15 Garling Road Kings Park 10/9-13 Winbourne Road Brookvale 122 Milperra Road Revesby

Rural

Bathurst Orange 51 Sydney Road Raglan 23 Leewood Drive Orange

CUSTARD

CUSTARD

Cł	HARAC	FERISTIC	S	E	QUIVA		ГS	С	HEMI		NAL	YSIS (%	%)
Hardness Supp	lied (HB)	14	2 - 119	BS	AISI/SAE	UNS	DIN	с	Si	Mn	Р	S	
		14	2-115	970	1020	G10200	C22	0.15	0.35 max	0.3	0.05 max	0.05 max	
Tancila Strong	+b (Mpa)	(1(0 - 480	070M20				0.25		0.9			
Tensile Streng	сп (мра)	410) - 400					NO	TES			·	
Machinability F	Rating %		65	Suit	is genera	al purpos	se "mild	steel" ap	Mild Ste oplication ss and w	ns. Good	, balance	e of streng	gth,
POSSIBLE		2NATIVE 1214, 12L14	GRADES		oe case h	nardene	vanised p d but no	provided t inducti		0.05%. rough H	ardened	Cold form I. Used as cations.	

WARNING: While all care has been taken to provide accurate information here, it should be noted that it is for a guide only and any information must be checked by the manufacturer before being relied upon.

Sydney Metro

Blacktown Brookvale Revesby 15 Garling Road Kings Park 10/9-13 Winbourne Road Brookvale 122 Milperra Road Revesby

Rural

Bathurst Orange 51 Sydney Road Raglan 23 Leewood Drive Orange

WHITE

Cł	HARACI	FERISTIC	S	E	QUIVA	LENT	rs	С	HEMI	CAL A	NALY	/SIS (%	%)
Hardness Supp	lied (HB)	16	4 - 147	BS	AISI/SAE	UNS	DIN	с	Si	Mn	Р	S	
		104	+ - 147	970	1030	G10300	C30	0.25	0.35 max	0.30	0.05 max	0.05 max	
Tensile Streng	th (Mpa)	FO	0 - 560	080M30				0.35		0.90			
Tensile Scieng	un (impa)		0-300					NO	TES				
Machinability I	Dating %		70									". Provide and welda	
Machinability	Rating 70								s and Arc				
POSSIBLE		NATIVE	GRADES										
							A	PLIC		NS			
	1018, 1020,	1214, 12L14		Car	nnot be l				Hardena or Shafts,			mended	for
						Case	Taruerii	ng. Mot	Si Shaits,		nges.		

WARNING: While all care has been taken to provide accurate information here, it should be noted that it is for a guide only and any information must be checked by the manufacturer before being relied upon.

Sydney Metro

Blacktown Brookvale Revesby 15 Garling Road Kings Park 10/9-13 Winbourne Road Brookvale 122 Milperra Road Revesby

Rural

Bathurst Orange

51 Sydney Road Raglan 23 Leewood Drive Orange

BLACK

CHARACT	FERISTICS	E	QUIVA	LEN ⁻	ГS	C	HEMI	CAL A	NAL	YSIS (%	%)
Hardness Supplied (HB)	300 - 540	BS	AISI/SAE	UNS	DIN	с	Si	Mn	Р	S	
	500 - 540	970	1045	G10450	C45	0.43	0.10	0.60	0.04 max	0.04 max	
Tapsilo Stropath	600 - 690	080A47				0.50	0.35	0.90			
Tensile Strength	069 - 009					NO	TES				
Machinability Rating %	55					ductility	and wel			e which fir Imatic rar	
POSSIBLE ALTER	NATIVE GRADES										
1040, 1045, 414	40, 718 Impax	C			ISE. DO I	PPLIC NOT COL 5, Pump S		M. DO NC		HARDEN ams.	4.

WARNING: While all care has been taken to provide accurate information here, it should be noted that it is for a guide only and any information must be checked by the manufacturer before being relied upon.

Sydney Metro

Blacktown Brookvale Revesby 15 Garling Road Kings Park 10/9-13 Winbourne Road Brookvale 122 Milperra Road Revesby

Rural

Bathurst Orange 51 Sydney Road Raglan 23 Leewood Drive Orange

1045 Chrome Bar

BLACK

CHARAC1	ERISTICS	EC	ZUIV	LEN	TS	C	немі	CAL A	NAL	/SIS (9	%)
Surface Hardness	800-1000 HV (64-69 RC)	ASTM	DIN	BS	UNS	с	Si	Mn	S	Р	
Surface Hardfiess	800-1000 HV (04-05 RC)	-	-	-	-	0.45	0.3	0.7	0.03	0.03	
Surface Smoothness											
4140 Chrome bar is also avai									_		
Surface Smoothness 0.1-0.3 um Ra Surface Deposit 0.0250.50mm Surface Deposit 0.0250.50mm										leave	
DESCR	IDTION				-						
1045 is a fully killed mediu traditional product used ir chrom	im carbon steel and is the In the manufacture of hard		and aut	omotive	in stand	teering-	ders, du gear sys	imp truc tems, lift	s, hydra	ifts, pres ulic platf rs.	

WARNING: While all care has been taken to provide accurate information here, it should be noted that it is for a guide only and any information must be checked by the manufacturer before being relied upon.

Sydney Metro

Blacktown Brookvale Revesby 15 Garling Road Kings Park 10/9-13 Winbourne Road Brookvale 122 Milperra Road Revesby

Rural

Bathurst Orange 51 Sydney Road Raglan 23 Leewood Drive Orange

BLUEBELL

СНА	RACTER	ISTICS		EC	<u></u> 20174		rs	CI	HEMI	CAL A	NAL	/SIS (9	%)
Tensile Strength (M	102)	90	0	ASTM	AISI	BS	JIS	с	Si	Mn	Cr	Мо	
Tensile Strength (M		50		A29M	4140	970	4105	0.40	0.25	0.80	0.90	0.20	
Hardpace Cupplied		70	10	91 4140		EN19A							
Hardness Supplied (HB) 270 General purpose high te								NO	ΓES		· · ·		
Hardness Supplied (HB) 270 NOTES Machinability Rating % 50 General purpose high tensile steel, used for axle and bolts, gears and drilling rods. Generally supplied (HB)								plied hai	rdened	and tem	pered.		
						ПЕУТ	TDE	ΑΤΜΕΙ				840 - 87	′5°C
DE 4140 is a 1% Chromic high tensile steel all		enum (Ch		C - 87 the se	ole for fla 75 C, hold ection, so	ame and d until te bak for 10	l inductio emperate) to 15 m	on harde ure is uni inutes pe or polyme	ning. He form th er 25 mr	roughou [.] n sectior	t F	IEAT COI STRA\	

WARNING: While all care has been taken to provide accurate information here, it should be noted that it is for a guide only and any information must be checked by the manufacturer before being relied upon.

Sydney Metro

Blacktown Brookvale Revesby 15 Garling Road Kings Park 10/9-13 Winbourne Road Brookvale 122 Milperra Road Revesby

Rural

Bathurst Orange

51 Sydney Road Raglan 23 Leewood Drive Orange

ROSE PINK

CHARA	CTERISTICS	E	QUIV	ALEN	TS		СН	IEM	IICA		NA	ALY9	SIS	(%)
Tensile Strength (MPa)	850-1000*	AS	DIN	BS	AISI		с	Si	Mn	Ni	Cr	Мо	S	Р
Tensile Scienger (MPa)	830-1000	4340	1.6565	~EN24	4340		0.4	0.25	0.7	1.8	0.8	0.25	0.025	0.025
Prinell Hardnoss (HP)	Brinell Hardness (HB) 248-302*		34CrNiMo6	~817 M 40										
Differ naturess (nd)	Brinell Hardness (HB) 248-302*					N	ОТ	ES						
Based on Conc	Brinell Hardness (HB) 248-302 *Based on Condition T specifications			n of Moly Ieness. 4		n prev	/ents	the s						
4340 is a Nickel, Chron applications requiring toughness values, partic	CRIPTION nium, Molybdenum steel for g high tensile strength and ularly in large cross sections in d tempered condition.			nents for . Exampl	the airc	e inclu	autor ude F	notivo Prope	e and ller S	d gen hafts		_		-

WARNING: While all care has been taken to provide accurate information here, it should be noted that it is for a guide only and any information must be checked by the manufacturer before being relied upon.

Sydney Metro

Blacktown Brookvale Revesby 15 Garling Road Kings Park 10/9-13 Winbourne Road Brookvale 122 Milperra Road Revesby

Rural

Bathurst <u>O</u>range

51 Sydney Road Raglan 23 Leewood Drive Orange

EN26

CUSTARD

SIGNAL RED

CHARAC ⁻	TERISTICS	E	QUIV	ALEN	TS		СН	IEM	ICA		NA	LY:	SIS	(%)	
Tensile Strength (MPa)	930-1080*	ASTM	DIN	BS 970			с	Si	Mn	Ni	Cr	Мо	S	Ρ	
Tensile Screnger (MPa)	930-1080	AS	1.6745	826 M 40			0.4	0.25	0.6	2.5	0.65	0.55	0.025	0.025	
Pripall Hardbacs (HP)	260 771*	X9940	40NiMoCr10-4	EN26											
Differ hardness (hb)	209-331						ОТ								
Based on Condit	Brinell Hardness (HB) 269-331 *Based on Condition T specifications			EN	126 has a		OT er st		h tha	an EN	125				
EN26 is a 2 1/2% Nickel Ch steel with higher Carbon	PIPTION romium Molybdenum alloy content and is supplied in mpered condition.	f	or auto <mark>n</mark>	notive ar	highly st nd gener ie block	aleng	d coi ginee rs ar	mpor ering nd he	nents appli avy fo	of la icatio	ns su	ich a	s sha	fts,	

WARNING: While all care has been taken to provide accurate information here, it should be noted that it is for a guide only and any information must be checked by the manufacturer before being relied upon.

Sydney Metro

Blacktown Brookvale Revesby 15 Garling Road Kings Park 10/9-13 Winbourne Road Brookvale 122 Milperra Road Revesby

Rural

Bathurst Orange 51 Sydney Road Raglan 23 Leewood Drive Orange

ROSE PINK

СНАГ	RACT	ERISTIC	S	E	QUIVA		ГS	С	HEMI	CAL A	NAL	/SIS (9	%)
Hardness Supplied ((HB)	23(0 - 350	BS	AISI/SAE	UNS	DIN	с	Si	Mn	Р	S	
Hardness Supplied		230) - 330	970	1213	G12130	9SMn28	0.15 max	0.10 max	0.80	0.04	0.25	
Tancila Strongth (N	(100)	770	480	220M07						1.20	0.09	0.35	
	Tensile Strength (Mpa) 370 - 480							NO	TES				
Machinability Ratin	ng %		370 - 480 NOTES 158 A widely used free machining steel which has reasonable ductility ar weldability. Mainly used for items that require extensive machining										
POSSIBLE AI		NATIVE 030, 12L14	GRADES		ardening	g. Used f	dening l or Brake	Pistons,	ecomme hose en	ended fo	y inserts	tion or Fla s, vice jav _D.	

WARNING: While all care has been taken to provide accurate information here, it should be noted that it is for a guide only and any information must be checked by the manufacturer before being relied upon.

Sydney Metro

Blacktown Brookvale Revesby 15 Garling Road Kings Park 10/9-13 Winbourne Road Brookvale 122 Milperra Road Revesby

Rural

Bathurst Orange 51 Sydney Road Raglan 23 Leewood Drive Orange

12L14

VIOLET

VIOLET

CHARACT	ERISTICS	E	QUIVA	LEN	TS	С	HEMI		NAL	/SIS (9	%)
Tensile Strength (MPa)	400-760	AS	DIN	BS	JIS	с	Si	Mn	Р	S	Pb
	+00-700	1443/12L14	95MnPb28	230M07	SUM22L	0.15	0.1	0.8-1.2	0.04-0.09	0.25-0.35	0.15-0.35
Vield Strength (Mag)	270 500			Leaded							
Yield Strength (Mpa)	230-590					NO	TES		_	<u>.</u>	
Hardness (HB)	105-225	NOTES This is a premium grade of free cutting steel that has excellent machin qualities and is suitable for case hardening and electroplating.									ning
DESCR 12L14 is a Re-Sulphurised machinir	d, Re-Phosphorised free	Тур	-	-	petition	-	ers to ma	NS ake brake les and v			eys,

WARNING: While all care has been taken to provide accurate information here, it should be noted that it is for a guide only and any information must be checked by the manufacturer before being relied upon.

Sydney Metro

Blacktown Brookvale Revesby 15 Garling Road Kings Park 10/9-13 Winbourne Road Brookvale 122 Milperra Road Revesby

Rural

Bathurst <u>O</u>range 51 Sydney Road Raglan 23 Leewood Drive Orange

750 HB

CHARACT	ERISTICS	E	201V/	ALENT	ГS	С	HEMI	CAL A	NAL	YSIS (%	%)
Tensile Strength (Mpa)	690	UNS	AISI	BS	W.Nr	с	Si	v	Mn	S	Р
	090	K01907		4360	1.5217	0.16	0.1	0.08	1.3	0.02	0
Hardness Supplied (HB)	210	K12202		GR 55		0.22	0.35	0.15	1.6	0.04	0.03
naidiless Supplied (i ib)	210					NO	TES				
Machinability Rating %	of app	olications	s utilizing	g it's cons	tensively siderable	by all indexe	on mach	hining tir	or a wide r me and v , Conveyc	weight	
	Machinability Rating % 65				Hollow F	Parts and	d compc	onents, N	luts, Ring	gs, etc.	
	DESCRIPTION									760°C - 7	′80°C
20MnV6 is a carbon-mang with vanadium, generally rolled co				TREA ase Hara nch from	dening				HEAT COL LIGHT R		

WARNING: While all care has been taken to provide accurate information here, it should be noted that it is for a guide only and any information must be checked by the manufacturer before being relied upon.

Sydney Metro

Blacktown Brookvale Revesby 15 Garling Road Kings Park 10/9-13 Winbourne Road Brookvale 122 Milperra Road Revesby

Rural

Bathurst Orange 51 Sydney Road Raglan 23 Leewood Drive Orange

1300 233 266 edconsteel.com.au

RED

E110

WHITE

CF	IARAC1	ERISTICS		E	QUIVA	LEN	ГS		СН	IEM	IICA		NA	LYS	SIS	(%)	
Topsilo Strongt		000 1070		AS	DIN	BS	AISI		с	Si	Mn	Ni	Cr	Мо	s	Р	
Tensile Strengt	n (MPa)	980-1270	5	AS1444- 1996	1.6587				0.18	0.3	0.5	1.5	1.7	0.3	0.025	0.025	
Drinell Llardine		200.777		X4317	17CrNiMo6	EN354											
Brineli Hardne	Brinell Hardness (HB) 290-375							N	ОТ	FS							
Brinell Hardness (HB) 290-375				Ell	0 combii	nes core	toughn		nd hig	gh ca		ardne	ess af	ter ca	arbur	ising	
	lickel Chro	IPTION mium Molybdenu ng steel.	m case		nponent ength sua ar	ch as ge	rge cros	kshaf	ions ts an	requ nd he	iring avy d	high uty g	ear s	hafts	in ai		

WARNING: While all care has been taken to provide accurate information here, it should be noted that it is for a guide only and any information must be checked by the manufacturer before being relied upon.

Sydney Metro

Blacktown Brookvale Revesby 15 Garling Road Kings Park 10/9-13 Winbourne Road Brookvale 122 Milperra Road Revesby

Rural

Bathurst Orange 51 Sydney Road Raglan 23 Leewood Drive Orange

EN36A

TURQUOISE

TURQUOISE

СН	ARACT	ERISTIC	S	EC	<u></u> 20174		rs	С	HEMI	CAL A	NAL	/SIS (9	6)
Tensile Strength		70	0 - 770	DIN	AISI	BS	JIS	Ni	С	Mn	Cr	Si	Cr
Tensile Strengti	i (iviµa)	70	0 - 770	14NiCr14	E3310	655M13	SNC815	3	0.13	0.5	0.9	0.25	0.7
Hardnass Cuppli			212					3.75					1
Hardness Suppli	ес (пр)		212						TEC				
Hardness Supplied (HB) 212 NOTES Can be welded before carburizing and case hardening.													
					00								
		IPTION				ПЕУТ	TDE				,	760°C - 7	80°C
A Nickel-chron hardenability applications inclu	me case ha	ardening ste d core streng stressed gea	gth. Typical	until te	wing co emperat	Co re refinii cure is ur	niform th	lening eat to 76 nrougho	0°C - 80 ut the se	0°C, hold ection, ar and warr	nd	IEAT COI LIGHT R	

WARNING: While all care has been taken to provide accurate information here, it should be noted that it is for a guide only and any information must be checked by the manufacturer before being relied upon.

Sydney Metro

Blacktown Brookvale Revesby 15 Garling Road Kings Park 10/9-13 Winbourne Road Brookvale 122 Milperra Road Revesby

Rural

Bathurst Orange

51 Sydney Road Raglan 23 Leewood Drive Orange

Ol Tool Steel

GOLDEN TAN

GOLDEN TAN

CHARACT	TERISTICS	E	QUIVA	ALEN ⁻	TS	C	немі	CAL A	NALY	/SIS (%	6)
Compressive Strength (Mpa)	2150 @ 60 HRC		AISI	W.Nr.		C	Mn	Cr	W	V	
	190 HP dolivery condition		01	1.2510		0.95	1.1	0.6	0.6	0.1	
Hardness Supplied 190 HB delivery condition PRODUCT OPTIONS											
Density (kg/m³) 7800 K720, Silver Steel, Flat Ground Stock, DF2, A									2, ARNE		
DESCR A general purpose tool											
variety of cold work app include good machinabilty of high surface hardne			SEE M		TTRE			TIONS			
hardening an	-										

WARNING: While all care has been taken to provide accurate information here, it should be noted that it is for a guide only and any information must be checked by the manufacturer before being relied upon.

Sydney Metro

Blacktown Brookvale Revesby 15 Garling Road Kings Park 10/9-13 Winbourne Road Brookvale 122 Milperra Road Revesby

Rural

Bathurst Orange 51 Sydney Road Raglan 23 Leewood Drive Orange

K100

CHARAC1	TERISTICS	EC	QUIVA	ALEN ⁻	TS	CI	НЕМІ	CAL A	NAL	/SIS (%	%)
Average Rockwell C	57 - 64	EN/DIN	AISI	BS	JIS		с	Si	Mn	Cr	
after tempering	37 - 04	<1.2080>	D3	BD3	~SKD1		2.00	0.25	0.30	11.50	
List Forming Tomon	1050%	X210Cr12									
Hot Forming Temp.	1050°C - 850°C										
Annealing Temp.	POSSIBLE ALTERNATIVES										
Standard grade of high car High performance cuttir	IPTION bon, high chromium steels. ng tools (dies & punches), bunching tools.			SEE M	HEA ANUFAC	TTRE TURER'S			TIONS		

WARNING: While all care has been taken to provide accurate information here, it should be noted that it is for a guide only and any information must be checked by the manufacturer before being relied upon.

Sydney Metro

Blacktown Brookvale Revesby 15 Garling Road Kings Park 10/9-13 Winbourne Road Brookvale 122 Milperra Road Revesby

Rural

Bathurst Orange 51 Sydney Road Raglan 23 Leewood Drive Orange

K110

CHARAC1	TERISTICS	E	QUIVA	LEN.	TS	С	HEMI	CAL A	NAL	/SIS (9	%)
Average Rockwell C	58 - 63	EN/DIN	AISI	BS	JIS	с	Si	Mn	Cr	Мо	v
after tempering		<1.2379>	D2	BD2	~SKD11	1.55	0.25	0.35	11.80	0.80	0.95
List forming tomp	1050°C - 850°C	5CrVMo12-1									
Hot forming temp.	1050°C - 850°C	POSSIBLE ALTERNATIVES									
Annealing temp.	800°C - 850°C	POSSIBLE ALTERNATIVES XW41, D2, Sverker 21									
DESCR K110 features excellent to for bath nitriding. Used cutting	oughness and is suitable I for high performance			SEE M	HEA IANUFAC	TTURER'S			TIONS		

WARNING: While all care has been taken to provide accurate information here, it should be noted that it is for a guide only and any information must be checked by the manufacturer before being relied upon.

Sydney Metro

Blacktown Brookvale Revesby 15 Garling Road Kings Park 10/9-13 Winbourne Road Brookvale 122 Milperra Road Revesby

Rural

Bathurst Orange 51 Sydney Road Raglan 23 Leewood Drive Orange

1300 233 266 edconsteel.com.au

LILAC

Stavax

BLACK

MARIGOLD

CHARACT	ERISTICS	E	QUIVA	ALEN ⁻	rs	С	немі	CAL A	NAL	/SIS (%	%)
Tensile Strength (Mpa)	1780 @ 50 HRC	W.nr	AISI			с	Mn	Cr	v		
5 (1 /		1.2083	420 ESR			0.38	0.5	13.6	0.3		
Hardness Supplied	215 HB										
ndraness Supplied	213110										
Density (kg/m³)	7800			P	JSSIB		.IERN M340	ΙΑΤΙνι	ES		
DESCR	IPTION										
A through-hardening prem with very good corrosion polishability. Stavax® ES for small to medium size	resistance and excellent R is an excellent choice e tools where corrosion			SEE		AT TRE		ENT CIFICATIO	ONS		
in production is unacce requirements for goo											

WARNING: While all care has been taken to provide accurate information here, it should be noted that it is for a guide only and any information must be checked by the manufacturer before being relied upon.

Sydney Metro

Blacktown Brookvale Revesby 15 Garling Road Kings Park 10/9-13 Winbourne Road Brookvale 122 Milperra Road Revesby

Rural

Bathurst Orange 51 Sydney Road Raglan 23 Leewood Drive Orange

Calmax

WHITE

CHARACT	FERISTICS	EC	QUIVA	LEN.	TS	С	HEMI	CAL A	NALY	/SIS (9	%)
Compressive Strength	2500 @ 58 HRC	ASTM	AISI	BS	JIS	с	Si	Mn	Cr	Мо	v
compressive strengen	2300 @ 30 111(0					0.60	0.35	0.80	4.50	0.50	0.20
Hardness Supplied	200 HB delivered condition										
						NO	TES				
Density (kg/m³)	7770	suc	ch as 01, /	A2, D2, [esswork t D3 or D6.	. These st	teels offe	er adequa	ate wear	r resistar	nce
DESCR A cold work steel suitable			hardena	ability of of tougł	ness, hov ften mea hness and roductior	an high n d wear re	maintena esistance	ance cost e makes	ts. The ex CLAMA>	xcellent	
for a wide variety of appl wear dominates and/or w or crackin			SEE	HEA MANUF,	AT TRE			ONS			

WARNING: While all care has been taken to provide accurate information here, it should be noted that it is for a guide only and any information must be checked by the manufacturer before being relied upon.

Sydney Metro

Blacktown Brookvale Revesby 15 Garling Road Kings Park 10/9-13 Winbourne Road Brookvale 122 Milperra Road Revesby

Rural

Bathurst Orange 51 Sydney Road Raglan 23 Leewood Drive Orange

718 - IMPAX

LIME GREEN

CUSTARD

CHARACT	TERISTICS	E	QUIVA	LEN.	TS	CI	НЕМІ	CAL /	ANALY	YSIS (୨	%)
Tensile Strength (Mpa)	1020		AISI	W.nr		C	Mn	Cr	Мо	S	Ni
Hardness Supplied	290 - 330 HB		P20+Ni	1.27		0.37	1.40	2.00	0.20	0.01	1.00
	230 330 115	-		P	OSSIB			IATIV	ES		
Density (kg/m³) 7800 Impax Supreme, M200											
Prehardened plastic m	RIPTION mould steel. Very good good machinabilty.			SEE		AT TRE ACTURE			ONS		

WARNING: While all care has been taken to provide accurate information here, it should be noted that it is for a guide only and any information must be checked by the manufacturer before being relied upon.

Sydney Metro

Blacktown Brookvale Revesby 15 Garling Road Kings Park 10/9-13 Winbourne Road Brookvale 122 Milperra Road Revesby

Rural

Bathurst Orange 51 Sydney Road Raglan 23 Leewood Drive Orange

CCG CI HB (2P Cast)

ROSE PINK

DARK GREY BLUE

CHARACT	FERISTICS	E	QUIV	LEN.	TS		СН	IEM			NA	LYS	SIS	(%)	
Tensile Strength (MPa)	220-260	AS	BS	DIN	JIS	с	Mn	Si	Ni	Cr	Мо	Р	s	AI	Cu
		1830- T260	1452- Grade 1 7	1691- GG35	FC-25	3.25	0.55	2.3	0.08	0.4	0.1	0.1	0.8	0.1	0.7
Compressive Strength	800-850														
(Mpa)	000-000														
					I HB repl					Iron	Grad	0			
Hardness Range (HB)	215-269				пырі	aces	the o		Casi	. 11011	Ulau	e.			
The grade of cast iron is exceptionally good wearin when the the component of and physical properties s	PIPTION normally called for when ng qualities are required or lesign demands mechanical superior to those of a soft, iron centrifugally cast.		Pistons	s, End Ca	AF ps, Gland	DPL Is, Sup					l Valv	es, R	otors.		

WARNING: While all care has been taken to provide accurate information here, it should be noted that it is for a guide only and any information must be checked by the manufacturer before being relied upon.

Sydney Metro

Blacktown Brookvale Revesby 15 Garling Road Kings Park 10/9-13 Winbourne Road Brookvale 122 Milperra Road Revesby

Rural

Bathurst Orange 51 Sydney Road Raglan 23 Leewood Drive Orange

3D Ductile Iron

CUSTARD

ROSE PINK

CH.	ARACTE	RISTICS	EC	ZUIV	ALEN ⁻	TS		СН	IEM	IICA		NA	LY:	SIS	(%)	
Tensile Strength		415	AS	BS	DIN	JIS	С	Mn	Si	Ni	Cr	Мо	Р	s	Mg	Cu
Tensile Strength	r (I™I₽a)	415	1831-400	2789- SNG	1693-	FC-D45	3.55	0.3	2.5	0.03	0.02	0.01	0.1	0.01	0.04	0.05
Elongation	Elongation (%) 12			27/12	GGG 40	FC-D43										
Liongation	(70)	12					Ν	OT	ES							
Hardness Rang	Hardness Range (HB) 187 max				nodules	er from th instead o an grey i	ne gr of flal	ey iro kes. T	ons in he re	esultir	ng m	ateria	al has	s a ge	eneral	lly
	DESCOL	DTION				r	eadil	y ma	chine	ed.						
Also known as Bl (nodular) ducti ferritic grade, hav impact. It can be v	DESCRIPTION Also known as BU DUCTILE CI - a spheroidal graphit (nodular) ductile iron. This grade is an essentially ferritic grade, having high elasticity and resistance t impact. It can be welded but cannot be readily flame induction hardened.					AF ns deman narine, au tool ar	iding tomo [.]	resist tive, h	ance Iydrau	ulic, ag	rosioi gricul					ie

WARNING: While all care has been taken to provide accurate information here, it should be noted that it is for a guide only and any information must be checked by the manufacturer before being relied upon.

Sydney Metro

Blacktown Brookvale Revesby 15 Garling Road Kings Park 10/9-13 Winbourne Road Brookvale 122 Milperra Road Revesby

Rural

Bathurst Orange 51 Sydney Road Raglan 23 Leewood Drive Orange

4E Cast Iron

CUSTARD

CUSTARD

CHARACI	TERISTICS	E	QUIVA	ALENT	٢S		СН	IEM	1ICA		N A	ALY :	SIS	(%)	
Tensile Strength (MPa)	250-260	AS	BS	DIN	JIS	с	Mn	Si	Ni	Cr	Мо	Р	s	AI	Cu
	230-200	1830- T250	1452 - Grade 17	161-GG35	FC-25	3.35	0.45	2.6	0.08	0.08	0.01	0.1	0.08	0.01	0.3
Compression Strength (Mpa) 700-800															
(Mpa)	700-800					N	ΙΟΤ	ES							
Hardness Range (HB)			s a typica ies ensur withs		tabilit	ty in a	appli	icatior	ns de	eman	nding				
DESCR	IPTION														
partial pearlitic structure the core. This material is ic machining with significan tool like and reductions in	rs bars consist of a uniform e from the bar surface to deally suited to high speed at improvements in cutting drill wander which occurs vitates to a softer surface.		Pistons	s, End Car					DNS ings, C		ol Valv	ves, R	otors.		

WARNING: While all care has been taken to provide accurate information here, it should be noted that it is for a guide only and any information must be checked by the manufacturer before being relied upon.

Sydney Metro

Blacktown Brookvale Revesby 15 Garling Road Kings Park 10/9-13 Winbourne Road Brookvale 122 Milperra Road Revesby

Rural

Bathurst Orange 51 Sydney Road Raglan 23 Leewood Drive Orange

LG2 Bronze

VIOLET

VIOLET

CHARACI	TERISTICS	EC	QUIVA	ALENT	rs	CI	HEMI	CAL A	NAL	YSIS (%	%)	
Tensile Strength (Mpa)	200 - 270	ASTM	AISI	BS	JIS		Cu	Sn	Zn	Pb		
Tensile Strength (Mpd)	200 - 270	SAE 40		1400	BC6C		85	5	5	5		
Hardness Supplied (HB)	80 - 66	C83600		LG2-C								
	80 - 00					NO	ΓES					
Machinability Rating %	178	NOTES Commonly known as Lead Gunmetal. May be used for Phosphor Bronze (PB1) applications.										
DESCR Continuous Cast Bronze B Bars. Continuously cast B physical properties comp material due to the eli	Ge	eneral pu		earing, h	PPLIC aydraulic slide valve	compor	nents, Ge		rm Whee	els,		

WARNING: While all care has been taken to provide accurate information here, it should be noted that it is for a guide only and any information must be checked by the manufacturer before being relied upon.

Sydney Metro

Blacktown Brookvale Revesby 15 Garling Road Kings Park 10/9-13 Winbourne Road Brookvale 122 Milperra Road Revesby

Rural

Bathurst Orange 51 Sydney Road Raglan 23 Leewood Drive Orange

PB1 Bronze

BLACK

GOLDEN TAN

CHARACI	ERISTIC	S	EC	QUIVA	LEN	TS		CH	IEM	ICA		NA	LYS	SIS	(%)	
Tensile Strength (MPa)	34	0-360	AS 90710	BS PB1	SAE 65	ASTM C90700		Cu 88	Pb 0.25	Sn 11	Ni 0.1	Zn 0.05	Sb 0.2	Р 1	AI 0.005	
Hardness Strength (HB)		80														
Yeild Strength (Mpa)		170	NOTES PBI has good corrosion resistance to sea water and brine. PBI must have good lubrication and alignment.													
DESCR PB1 is a bronze grade with g and high				AF n gears, w s with good	/orm ·	whee		l bear	ings					ĵh		

WARNING: While all care has been taken to provide accurate information here, it should be noted that it is for a guide only and any information must be checked by the manufacturer before being relied upon.

Sydney Metro

Blacktown Brookvale Revesby 15 Garling Road Kings Park 10/9-13 Winbourne Road Brookvale 122 Milperra Road Revesby

Rural

Bathurst Orange 51 Sydney Road Raglan 23 Leewood Drive Orange

954 Aluminum Bronze

SILVER

BOTTLE GREEN

STICS	E	QUIVA	LEN	TS	C	НЕМІ	CAL A	NALY	/SIS (%	%)
FOC	AS	ASTM	SAE	JIS	Cu	Fe	Ni	Mn	AI	
586	95400	C95400	J461/ J462	ALBCZC	83	4	1.5	0.5	11	
221										
221										
180										
100									-	
954 is very hard and abrasive resistant, it has excellent strength and wear resistance with reasonable										
achining properties. Physical properties remain good at elevated temperatures.				Hig	h Streng	th beari	ngs.			
	586 221 180 ON stant, it has excellent with reasonable operties remain good	586 As 95400 221 180 General N stant, it has excellent with reasonable operties remain good	As ASTM 586 95400 C95400 221 221 Image: Construction of the second	ASASTMSAE58695400C95400J461/ J462221000180General corrosion resist dealuminifation.ON stant, it has excellent with reasonable operties remain goodImage: Constant of the second	As ASTM SAE JIS 586 95400 C95400 J461/ J462 ALBCZC 221 10 10 10 180 General corrosion resistance is general corrosion. Possible ON Stant, it has excellent with reasonable operties remain good	As ASTM SAE JIS Cu 586 95400 C95400 J461/ J462 ALBCZC 83 221 10 10 10 10 10 180 Ceneral corrosion resistance is good, but dealuminifation. Possible alternations NOC ON Stant, it has excellent with reasonable operties remain good APPLIC	AS ASTM SAE JIS Cu Fe 586 95400 C95400 J461/ J462 ALBCZC 83 4 221 10 10 10 10 10 10 180 General corrosion resistance is good, but under dealuminifation. Possible alternatives to S 95400 Stant, it has excellent with reasonable operties remain good ASTM SAE JIS Cu Fe 180 General corrosion resistance is good, but under dealuminifation. Possible alternatives to S SAE SAE SAE	AS ASTM SAE JIS Cu Fe Ni 586 95400 C95400 J461/ J462 ALBCZC 83 4 1.5 221 10 10 10 10 10 10 10 180 Ceneral corrosion resistance is good, but under some cir dealuminifation. Possible alternatives to 954 are A A ON Assesses APPLICATIONS APPLICATIONS A apperties remain good Fe Ni Ni Fe Ni	As ASTM SAE JIS Cu Fe Ni Mn 586 95400 C95400 J46i/ J462 ALBCZC 83 4 1.5 0.5 221 100 146i/ J462 ALBCZC 83 4 1.5 0.5 180 Ceneral corrosion resistance is good, but under some circumstar dealuminifation. Possible alternatives to 954 are ABI & ABZ ON Astant, it has excellent with reasonable operties remain good ApplicATIONS High Strength bearings.	As ASTM SAE JIS Cu Fe Ni Mn AI 586 95400 C95400 J461/ J462 ALBCZC 83 4 1.5 0.5 11 221 10 1462 ALBCZC 83 4 1.5 0.5 11 221 10 1462 ALBCZC 83 4 1.5 0.5 11 221 180 NOTES Seneral corrosion resistance is good, but under some circumstances may dealuminifation. Possible alternatives to 954 are AB1 & AB2 Bronze AB2 Bronze ON Stant, it has excellent with reasonable operties remain good APPLICATIONS High Strength bearings.

WARNING: While all care has been taken to provide accurate information here, it should be noted that it is for a guide only and any information must be checked by the manufacturer before being relied upon.

Sydney Metro

Blacktown Brookvale Revesby 15 Garling Road Kings Park 10/9-13 Winbourne Road Brookvale 122 Milperra Road Revesby

Rural

Bathurst Orange 51 Sydney Road Raglan 23 Leewood Drive Orange

Brass

NATURAL

NATURAL

CHARACI	TERISTICS	EC	ZUIVA	LEN.	TS		CHEI	MICAL	. ANALY	′ <mark>SIS (</mark> %	%)
Tensile Strength (MPa)	380	ASTM	AISI	BS	UNS		Cu	AI	Zn	Pb	
rensile strength (MFd)	300			CZ121	C38510	MIN	56	-	Remainder	2.5	
Lardness Supplied (LD)	85 - 110					MAX	60	-	Remainder	4.5	
Hardness Supplied (HB)	05 - 110						OTEC				
Machinability Rating %			fresh w	/ater but	a wa shou	ld not b	ize colou	r. It has goc contact wi t water.			
60/40 brass. Uniform lead o	ificantly improved form of				dware an	d arcl		al applica	ation in sect crew threac		

WARNING: While all care has been taken to provide accurate information here, it should be noted that it is for a guide only and any information must be checked by the manufacturer before being relied upon.

Sydney Metro

Blacktown Brookvale Revesby 15 Garling Road Kings Park 10/9-13 Winbourne Road Brookvale 122 Milperra Road Revesby

Rural

Bathurst Orange 51 Sydney Road Raglan 23 Leewood Drive Orange

NATURAL

NATURAL

CI	HARAC	TERIST	ICS	E		LEN ⁻	TS		CHE	MICAL	ANAL	YSIS (9	%)
Tensile Streng	th (MPa)		245	ASTM	AISI	BS	UNS		Cu	AI	Zn	0	
renene ereng			210			C101	C11000	MIN	99.9	-	-	-	
Hardness Supp	blied (UD)		75 - 90					MAX	100	-	-	0.04	
Hardness Supp			/3 - 90			-			OTEC				
Machinability	applica	ations be	ecause it	t resists s	ion re soil co	rrosion.	e and can Generally	used in ur / resists m specific co	ineral, fat	ty and			
DESCRIPTION Electrolytic tough Pitch (ETP) copper, alloy 110, has excellent ductility and high electrical, thermal conductivity.				and	l plumbi	ng or gu	er electric utters. Cl	cal ap 1000 ł	has up t	ns, gasket o 0.04% C	s, connect Xygen and should NO	d is there	fore

WARNING: While all care has been taken to provide accurate information here, it should be noted that it is for a guide only and any information must be checked by the manufacturer before being relied upon.

Sydney Metro

Blacktown Brookvale Revesby 15 Garling Road Kings Park 10/9-13 Winbourne Road Brookvale 122 Milperra Road Revesby

Rural

Bathurst Orange 51 Sydney Road Raglan 23 Leewood Drive Orange

304 Stainless Steel

LILAC

CHARACTERISTICS

Tensile Strength (Mpa)	520	
Hardness Supplied (HB)	200	
Machinability Rating %	55	

DESCRIPTION

304 Grade stainless steel is the most commonly used stainless steel. It is an austenitic, corrosion resistant steel with good strength, toughness and weldability characteristics.

CHEMICAL ANALYSIS (%)

	с	Si	Mn	Р	S	Cr	Мо	Ni
MIN	0	0.45	1.5	0.03	0	16	2	10
МАХ	0.08	0.75	2	0.045	0.03	18	3	14

NOTES

Sometimes called furniture or cutlery grade stainless steel. It has good corrosion and weather resistance in indoor and some outdoor applications but would not be suitable for severe or marine environments. The ease of cleaning and maintaining a hygienic surface on the steel makes it suit able for many purposes.

HEAT TREATMENT

WARNING: While all care has been taken to provide accurate information here, it should be noted that it is for a guide only and any information must be checked by the manufacturer before being relied upon.

Sydney Metro

Blacktown Brookvale Revesby 15 Garling Road Kings Park 10/9-13 Winbourne Road Brookvale 122 Milperra Road Revesby

Rural

Bathurst Orange

51 Sydney Road Raglan 23 Leewood Drive Orange

316 Stainless Steel

BOTTLE GREEN

BOTTLE GREEN

CHARACT	ERISTICS		С	HEMI	CAL A	NAL	YSIS (%	%)		
Tensile Strength (Mpa)	580 - 650	с	Si	Mn	Р	S	Cr	Мо	Ni	
Tensile Strength (Mpa)	300 - 830	0.08	0.75	2.0	0.045	0.03	16.0	2.0	10.0	
Hardness Supplied (HB)	195 - 150						18.0	3.0	14.0	
	- 150				NO	TES				
Machinability Rating %	48			ellent co		esistanc	e makes		e industri ole partic	
DESCR Type 316 has extensive us equipment when better com than is afforded by chrom applications are Food Proces Photographic, Pharmaceu Equipment and Ma				AT TRE DT RECOI						

WARNING: While all care has been taken to provide accurate information here, it should be noted that it is for a guide only and any information must be checked by the manufacturer before being relied upon.

Sydney Metro

Blacktown Brookvale Revesby 15 Garling Road Kings Park 10/9-13 Winbourne Road Brookvale 122 Milperra Road Revesby

Rural

Bathurst Orange

51 Sydney Road Raglan 23 Leewood Drive Orange

431 Stainless Steel

BLUEBELL

MARIGOLD

CHARAC ⁻	TERISTICS	E	QUIVA	LEN	TS		СН	IEM			NA	LY S	SIS	(%)	
Tensile Strength (MPa)	850-1000	AS	DIN	SIS	AISI		с	Si	Mn	Cr	Ni	s	Р		
	650-1000	431	X20CrNi16-2	2321	431		0.19	0.25	0.4	15.9	1.6	0.025	0.025		
Viold Strongth (Mpg)	600														
Yield Strength (Mpa)					N	ОТ	ES								
		This g	ırade can	ı not be	readily c for colc	old w	/orke	d and			ore no	ot rec	comn	nende	эd
DESCR 431 is a martensitic, nicke good corrosion resistance, strength and g	P	ump Sha	ifts, nut:	AF s, bolts & tensile	stud	s, val		rts or	r othe	r use	s wh	ere h	igh		

WARNING: While all care has been taken to provide accurate information here, it should be noted that it is for a guide only and any information must be checked by the manufacturer before being relied upon.

Sydney Metro

Blacktown Brookvale Revesby 15 Garling Road Kings Park 10/9-13 Winbourne Road Brookvale 122 Milperra Road Revesby

Rural

Bathurst Orange 51 Sydney Road Raglan 23 Leewood Drive Orange

2205 Duplex Stainless Steel

LIGHT BLUE

CUSTARD

Cŀ	IARAC	FERIST	ICS	EQU	IVA		ΓS		CH	IEM	IICA		N A	ALY:	SIS	(%)
Tensile Strengt			620	DIN		UNS	ASTM		с	Si	Mn	Cr	Ni	Мо	N	
Tensne strengt	II (MPa)		820	X2CrNiMoN22	5 3	S31803	A240		<0.03	1	2	22	5.5	3	0.02	
Viold Stropath			450													
Yield Strength	r (impa)		430					N	IOT	ES						·
				2205 p austenitio		des pitti inless st										
						205 is ab										
2205 is a Dupl localised and s	DESCRIPTION 2205 is a Duplex stainless steel with high general, localised and stress corrosion resistance properties in addition to high strength and excellent impact toughness.					ularly su 320C. C hangers	uitable fo Commoi , cargo t	n app	olicat Iicati for tr	ions o ons ii rucks	cover nclud and	ing to le: Pro shipp	essur	e Ves	sels,	tanks

WARNING: While all care has been taken to provide accurate information here, it should be noted that it is for a guide only and any information must be checked by the manufacturer before being relied upon.

Sydney Metro

Blacktown Brookvale Revesby 15 Garling Road Kings Park 10/9-13 Winbourne Road Brookvale 122 Milperra Road Revesby

Rural

Bathurst Orange 51 Sydney Road Raglan 23 Leewood Drive Orange

RED

RED

СН	ARAC1	TERISTICS			С	HEMI	CAL	ANAI	YSIS	(%)		
Tensile Strength		275 @T4		AI	Si	Fe	Cu					
Tensile Strengti	i (i•i⊭a)	273 @14	MIN	Remainder	0	0	5					
Danaitu		2820 kg/m³	MAX	Remainder	0.4	0.07	6					
Density		2820 Kg/III*						TEC				
				2011 has po provide so		^f ace prot	stance, \	t also h	ias POC)R weldak		<u> </u>
Aluminium Alloy alloy that mac	y 2011 is a l chines exc	IPTION high mechanical strength eptionally well. This free duction of detailed parts.			Autom		PPLIC ts, bolts			ew thread	s.	

WARNING: While all care has been taken to provide accurate information here, it should be noted that it is for a guide only and any information must be checked by the manufacturer before being relied upon.

Sydney Metro

Blacktown Brookvale Revesby 15 Garling Road Kings Park 10/9-13 Winbourne Road Brookvale 122 Milperra Road Revesby

Rural

Bathurst Orange

51 Sydney Road Raglan 23 Leewood Drive Orange

NATURAL

NATURAL

Cł	HARAC1	TERISTICS			С	HEMI	CAL /		YSIS	(%)		
Tensile Strengt	th (MDa)	210 @ H32		AI	Mg	Cr	Mn					
Tensile Strengt	ti (ivira)		MIN	Remainder	2.2	0.15	0					
Density		2680 kg/m ³	MAX	Remainder	2.8	0.25	0.1					
Density	y	2000 kg/11					NO	TES				
			me	003 is readi etal, it may c netals. Bime	corrode i	more qu action ne	ickly wh	en in el pe a prir	ectrical ne cons	contact	with most	t other
Aluminium All weldability and g	DESCRIPTION Aluminium Alloy 3003 has medium strength, good reldability and good corrosion resistance in marine ar seawater applications. Commonly used as sheet and plate forms.					A Marine a	PPLIC and Gen			al.		

WARNING: While all care has been taken to provide accurate information here, it should be noted that it is for a guide only and any information must be checked by the manufacturer before being relied upon.

Sydney Metro

Blacktown Brookvale Revesby 15 Garling Road Kings Park 10/9-13 Winbourne Road Brookvale 122 Milperra Road Revesby

Rural

Bathurst Orange 51 Sydney Road Raglan 23 Leewood Drive Orange

NATURAL

NATURAL

CHARACTERISTICS				CHEMICAL ANALYSIS (%)										
Tensile Strength (N	ר (MPa)	115-160 @ H32		AI	Si	Fe	Mn							
			MIN	Remainder	0	0	0.5							
Dopoity		2700 kg/m ³	MAX	Remainder	0.3	0.07	1.1							
Density		2700 kg/m	NOTES											
	5005 is a cold workable, non heat treatable medium strength alloy. Because Aluminium is a reactive metal, it may corrode more quickly when in electrical contact with most other metals. Bimetallic reaction needs to be a prime consideration in selecting aluminium fixings.													
DESCRIPTION Aluminium Alloy 5005 has medium strength, good weldability and good corrosion resistance in marine applications. Commonly used as sheet and plate forms.				Architectur	ral Appli		PPLIC eneral sh			k, high s	trength fc	oils.		

WARNING: While all care has been taken to provide accurate information here, it should be noted that it is for a guide only and any information must be checked by the manufacturer before being relied upon.

Sydney Metro

Blacktown Brookvale Revesby 15 Garling Road Kings Park 10/9-13 Winbourne Road Brookvale 122 Milperra Road Revesby

Rural

Bathurst Orange

51 Sydney Road Raglan 23 Leewood Drive Orange

NATURAL

NATURAL

CHARACI	CHEMICAL ANALYSIS (%)										
Tensile Strength (MPa)	210 @ H32		AI	Mg	Cr	Mn					
		MIN	Remainder	2.2	0.15	0					
Density	2680 kg/m ³	MAX	Remainder	2.8	0.25	0.1					
Density	2000 kg/11	NOTES									
	me	6052 is readi etal, it may c netals. Bime	corrode r	more qu action ne	ickly wh	en in ele e a prim	ectrical co ne consid	ontact w	/ith most	other	
DESCR Aluminium Alloy 5052 has weldability and very goo marine and seawater app as sheet and		Road Signs	s, Namer		PPLIC anelling,			l Tubes a	and vesse	els.	

WARNING: While all care has been taken to provide accurate information here, it should be noted that it is for a guide only and any information must be checked by the manufacturer before being relied upon.

Sydney Metro

Blacktown Brookvale Revesby 15 Garling Road Kings Park 10/9-13 Winbourne Road Brookvale 122 Milperra Road Revesby

Rural

Bathurst Orange 51 Sydney Road Raglan 23 Leewood Drive Orange

NATURAL

NATURAL

CHARACTERISTICS				CHEMICAL ANALYSIS (%)										
Tensile Strengt	th (MPa)	19	35 @ T5		AI	Si	Fe	Mg						
		10.		MIN	Remainder	0.3	0.1	0.35						
Density	,	270	$0 ka/m^3$	МАХ	Remainder	0.6	0.3	0.6						
Density	/	270	2700 kg/m ³	NOTES										
			h	Commonly las a very go apabilities i	od resp	onse to l	ns and s being ar ended fo	sections nodized.	While it	has goo	d weathe	ering		
DESCRIPTION Aluminium Alloy 6060 is a medium strength heat treatable alloy with good corrosion resistance and very good weldability.					Architectu ames and g		Geometi abricatio		ons used sink, tri	d for win ucking a		1		

WARNING: While all care has been taken to provide accurate information here, it should be noted that it is for a guide only and any information must be checked by the manufacturer before being relied upon.

Sydney Metro

Blacktown Brookvale Revesby 15 Garling Road Kings Park 10/9-13 Winbourne Road Brookvale 122 Milperra Road Revesby

Rural

Bathurst Orange

51 Sydney Road Raglan 23 Leewood Drive Orange

NATURAL

NATURAL

CHARACTERISTICS				CHEMICAL ANALYSIS (%)										
Tensile Strength (MP	Pa)	260-310	Mg	Mn	Fe	Si	Zn	Cr	Ті	Cu	AI			
		200 310	1	0.15	0.7	0.6	0.25	0.2	0.15	0.3	96.5			
		100												
Vickers Hardness														
	- NOTES													
Base	Good strength and weldability													
DESCRIPTION 6061 is a heat treatable alloy of medium strength.					Road		PPLIC frames. H		NS Puty Struc	tures.				

WARNING: While all care has been taken to provide accurate information here, it should be noted that it is for a guide only and any information must be checked by the manufacturer before being relied upon.

Sydney Metro

Blacktown Brookvale Revesby 15 Garling Road Kings Park 10/9-13 Winbourne Road Brookvale 122 Milperra Road Revesby

Rural

Bathurst Orange 51 Sydney Road Raglan 23 Leewood Drive Orange